Seasonal thermal energy storage
Inter-seasonal thermal energy storage also called seasonal thermal energy storage (STES) works in a very similar way to ground source heat pumps in that heat or coolth is store in, effectively, a battery with the main difference being that rather than extracting the existing heat or coolth from the ground via the coupling effect, it actively stores heat in the ground for use many months later.
Most inter-seasonal systems are heating systems that use solar collection to increase the amount of heat energy collected during warmer summer months. The solar collection systems can be relatively simple with a network of pipes laid close to the surface beneath a dark heavy finish, such as black tarmac. As such they can be laid beneath road systems, car parks or playgrounds. Similar to ground source heat pumps, a second system of pipework is installed deeper into the ground, or potentially beneath a buildings foundations.
At a depth of around 7 metres the earth's temperature tends to remain at a natural constant 10 degrees, which is the temperature standard ground source heat pumps run at, in these seasonal systems the extra heat within the solar collectors beneath the surface is pumped down to the deeper levels to achieve a constant temperature of around degrees. The ground loops are specifically designed to be able to take these increased levels of heat and store this over longer periods of time. In the colder winter months when outside temperatures are lower, the heat from the deep pipe systems is extracted via a heat pump and can be used to heat buildings during the colder months.
[edit] Related articles on Designing Buildings
- Coefficient of Performance CoP.
- Dynamic thermal modelling of closed loop geothermal heat pump systems.
- Earth berm.
- Earth bermed buildings.
- Earth to air heat exchangers.
- Energy storage.
- Energy storage for buildings.
- Energy storage - the missing piece?
- Energy targets.
- Environmental policy.
- Emission rates.
- Geothermal pile foundations.
- Geothermal energy.
- Ground coupling effect.
- Ground energy options.
- Ground energy options
- Ground source heat pumps.
- Ground preconditioning of supply air.
- Large scale solar thermal energy.
- Renewable energy sources: how they work and what they deliver: Part 3: Electrically driven heat pumps DG 532 3.
- Thermal labyrinths.
- Sustainability.
- Solar photovoltaics.
- Solar thermal energy.
- The future of UK power generation.
- Thermal labyrinths.
- Wind Energy in the United Kingdom.
[edit] External Links
Featured articles and news
Art of Building CIOB photographic competition public vote
The last week to vote for a winner until 10 January 2025.
The future of the Grenfell Tower site
Principles, promises, recommendations and a decision expected in February 2025.
20 years of the Chartered Environmentalist
If not now, when?
Journeys in Industrious England
Thomas Baskerville’s expeditions in the 1600s.
Top 25 Building Safety Wiki articles of 2024
Take a look what most people have been reading about.
Life and death at Highgate Cemetery
Balancing burials and tourism.
The 25 most read articles on DB for 2024
Design portion to procurement route and all between.
The act of preservation may sometimes be futile.
Twas the site before Christmas...
A rhyme for the industry and a thankyou to our supporters.
Plumbing and heating systems in schools
New apprentice pay rates coming into effect in the new year
Addressing the impact of recent national minimum wage changes.
EBSSA support for the new industry competence structure
The Engineering and Building Services Skills Authority, in working group 2.
Notes from BSRIA Sustainable Futures briefing
From carbon down to the all important customer: Redefining Retrofit for Net Zero Living.
Principal Designer: A New Opportunity for Architects
ACA launches a Principal Designer Register for architects.